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Abstract
We review the theory of odd-frequency pairing in superconducting heterostructures, where
an odd-frequency pairing component is induced near interfaces. A general description of
the superconducting proximity effect in a normal metal or a ferromagnet attached to an
unconventional superconductor (S) is given within quasiclassical kinetic theory for various
types of symmetry state in S. Various possible symmetry classes in a superconductor are
considered which are consistent with the Pauli principle: even-frequency spin-singlet
even-parity (ESE) state, even-frequency spin-triplet odd-parity (ETO) state, odd-frequency
spin-triplet even-parity (OTE) state and odd-frequency spin-singlet odd-parity (OSO) state.
As an example, we consider a junction between a diffusive normal metal (DN) and a p-wave
superconductor (even-frequency spin-triplet odd-parity symmetry), where the pairing amplitude
in DN belongs to an odd-frequency spin-triplet even-parity symmetry class. We also discuss the
manifestation of odd-frequency pairing in conventional superconductor/normal (S/N) proximity
systems and its relation to the classical McMillan–Rowell oscillations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well established that superconductivity is realized due
to the formation of Cooper pairs consisting of two electrons.
In accordance with the Pauli principle, it is customary to
distinguish spin-singlet even-parity and spin-triplet odd-parity
pairing states in superconductors, where odd (even) refer to
the orbital part of the pair wavefunction. For example, s-wave
and d-wave pairing states belong to the former case while the
p-wave state belongs to the latter one [1]. In both cases, the
pair amplitude is an even function of energy. However, the
so-called odd-frequency pairing states when the pair amplitude
is an odd function of energy can also exist. Then, the spin-
singlet odd-parity and the spin-triplet even-parity pairing states
are possible.

The possibility of realizing the odd-frequency pairing
state was first proposed by Berezinskii in the context of 3He,
where the odd-frequency spin-triplet pairing was discussed [2].

Odd-frequency superconductivity was then discussed in the
context of various mechanisms of superconductivity involving
strong correlations [3–5]. The odd-frequency pairing
state was recently proposed in ferromagnet/superconductor
heterostructures with inhomogeneous magnetization [6–11].
However, the very important issue of the manifestation of the
odd-frequency pairing in proximity systems without magnetic
ordering has not received any attention. This question is
addressed in the present paper.

Coherent charge transport in structures involving diffusive
normal metals (DN) and superconductors (S) has been
extensively studied during the past decade both experimentally
and theoretically. However, almost all previous work
was restricted to junctions based on conventional s-wave
superconductors [12]. Recently, a new theoretical approach
for studying charge transport in junctions based on p-wave
and d-wave superconductors was developed and applied to the
even-frequency pairing state [13, 14]. It is known that in the
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anisotropic paring state, due to the sign change of the pair
potential on the Fermi surface, a so-called midgap Andreev
resonant state (MARS) is formed at the interface [15, 16]. As
was found in [13, 14], MARS competes with the proximity
effect in contacts with spin-singlet superconductors, while it
coexists with the proximity effect in junctions with spin-triplet
superconductors. In the latter case, it was predicted that
the induced pair amplitude in the DN has a peculiar energy
dependence and the resulting local density of states (LDOS)
has a zero energy peak (ZEP) [14]. Here we review a general
theory of the proximity effect in the N/S junctions, both in
the clean and in the dirty limit [17], applicable to any type
of symmetry state in a superconductor forming the junction in
the absence of spin-dependent electronic scattering at the N/S
interface.

2. Junctions in the dirty limit

Let us first discuss the case of a diffusive normal metal attached
to a superconductor (DN/S junction). Before proceeding
with a formal discussion, let us present qualitative arguments
illustrating the main conclusions of the paper. Two constraints
should be satisfied in the considered system: (1) only
the s-wave even-parity state is possible in the DN due to
isotropization by impurity scattering, (2) the spin structure of
induced Cooper pairs in the DN is the same as in an attached
superconductor. Then the Pauli principle provides the unique
relations between the pairing symmetry in a superconductor
and the resulting symmetry of the induced pairing state
in the DN. Namely, for even-parity superconductors, even-
frequency spin-singlet even-parity (ESE) and odd-frequency
spin-triplet even-parity (OTE) states, the pairing symmetry in
the DN should remain ESE and OTE. On the other hand,
for odd-parity superconductors, even-frequency spin-triplet
odd-parity (ETO) and odd-frequency spin-singlet odd-parity
(OSO) states, the pairing symmetry in the DN should be OTE
and ESE, respectively. The generation of the OTE state in
the DN attached to the ETO p-wave superconductor is of
particular interest. A similar OTE state can be generated in
superconducting junctions with diffusive ferromagnets [6–11]
but due to a different physical mechanism. Although the
symmetry properties can be derived from the basic arguments
given above, the quantitative model has to be considered to
prove the existence of nontrivial solutions for the pairing
amplitude in the DN in each of the above cases. These
solutions and their main features will be discussed below.

Let us start with the general symmetry properties of the
quasiclassical Green’s functions in the considered system. The
elements of retarded and advanced Nambu matrices ĝ R,A

ĝR,A =
(

gR,A f R,A

f
R,A

gR,A

)

(1)

are composed of the normal gR
α,β(r, ε,p) and anomalous

f R
α,β (r, ε,p) components with spin indices α and β . Here

p = pF/|pF|, pF is the Fermi momentum, r and ε denote
coordinate and energy of a quasiparticle measured from the
Fermi level.

The function f R and the conjugated function f̄ R satisfy
the following relation [18, 19]

f̄ R
α,β (r, ε,p) = −[ f R

α,β(r,−ε,−p)]∗. (2)

The Pauli principle is formulated in terms of the retarded
and the advanced Green’s functions in the following way [18]

f A
α,β (r, ε,p) = − f R

β,α(r,−ε,−p). (3)

By combining the two above equations, we obtain f̄ R
β,α(r, ε,p)

= [ f A
α,β(r, ε,p)]∗. Further, the definitions of the even-

frequency and the odd-frequency pairing are f A
α,β (r, ε,p) =

f R
α,β (r,−ε,p) and f A

α,β (r, ε,p) = − f R
α,β(r,−ε,p), respec-

tively. Finally we get

f̄ R
β,α(r, ε,p) = [ f R

α,β (r,−ε,p)]∗ (4)

for the even-frequency pairing and

f̄ R
β,α(r, ε,p) = −[ f R

α,β(r,−ε,p)]∗ (5)

for the odd-frequency pairing. In the following, we focus on
Cooper pairs with Sz = 0, remove the external phase of the
pair potential in the superconductor and will concentrate on
the retarded part of the Green’s function.

We consider a junction consisting of a normal (N)
and a superconducting reservoirs connected by a quasi-one-
dimensional diffusive conductor (DN) with a length L much
larger than the mean free path. The Green’s function in the
superconductor can be parameterized as g±(ε)τ̂3 + f±(ε)τ̂2

using Pauli matrices, where the suffix +(−) denotes the
right (left) going quasiparticles. g±(ε) and f±(ε) are given
by g+(ε) = gR

α,β(r, ε,p)g−(ε) = gR
α,β(r, ε, p̄) f+(ε) =

f R
α,β (r, ε,p), and f−(ε) = f R

α,β (r, ε, p̄), respectively, with
p̄ = p̄F/|pF| and p̄F = (−pFx, pFy). Using the
relations (4), (5), we obtain that f±(ε) = [ f±(ε)]∗ for the
even-frequency pairing and f±(ε) = −[ f±(−ε)]∗ for the odd-
frequency pairing, respectively, while g±(ε) = [g±(−ε)]∗ in
both cases.

In the DN region only the s-wave even-parity pairing
state is allowed due to isotropization by impurity scattering.
The resulting pair amplitude in the DN can be parameterized
by cos θ τ̂3 + sin θ τ̂2 in a junction with an even-parity
superconductor and by cos θ τ̂3 + sin θ τ̂1 in a junction with an
odd-parity superconductor. The function θ satisfies the Usadel
equation [20] with the corresponding boundary condition at the
DN/S interface and at the N/DN interface [13].

In the following, we will consider four possible symmetry
classes of superconductor forming the junction and consistent
with the Pauli principle: ESE, ETO, OTE and OSO pairing
states. We will use the fact that only the even-parity s-wave
pairing is possible in the DN due to the impurity scattering and
that the spin structure of pair amplitude in the DN is the same
as in an attached superconductor.

(1) Junction with ESE superconductor. In this case, f±(ε) =
f ∗±(−ε) and g±(ε) = g∗±(−ε) are satisfied. Then,
the Usadel equations and the boundary conditions are
consistent with each other only when sin θ∗(−ε) =
sin θ(ε) and cos θ∗(−ε) = cos θ(ε). Thus the ESE state is
formed in the DN, in accordance with the Pauli principle.
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Figure 1. Local density of states in the diffusive normal metal DN in a contact with s-wave superconductor (a), px -wave superconductor (b)
and dxy-wave superconductor (c).

(2) Junction with ETO superconductor. Now we have
f±(ε) = f ∗±(−ε) and g±(ε) = g∗±(−ε). Then, fS(−ε) =
− f ∗

S (ε) = − f ∗
S and gS(−ε) = g∗

S(ε) = g∗
S. As

a result, the boundary value problem is consistent if
sin θ∗(−ε) = − sin θ(ε) and cos θ∗(−ε) = cos θ(ε).
Thus the OTE state is formed in the DN. Remarkably,
the appearance of the OTE state is the only possibility
to satisfy the Pauli principle, as we argued above.
Interestingly, the OTE pairing state can also be realized
in superconductor/ferromagnet junctions [6–11], but the
physical mechanism differs from the one considered here.

(3) Junction with OTE superconductor. In this case f±(ε) =
− f ∗±(−ε) and g±(ε) = g∗±(−ε). Then fS(−ε) =
− f ∗

S (ε) and gS(−ε) = g∗
S(ε) and we obtain sin θ∗(−ε) =

− sin θ(ε) and cos θ∗(−ε) = cos θ(ε). Due to the absence
of the spin flip scattering, these relations mean that the
OTE pairing state is induced in the DN.

(4) Junction with OSO superconductor. We have f±(ε) =
− f ∗±(−ε), g±(ε) = g∗±(−ε) and fS(−ε) = f ∗

S (ε),
gS(−ε) = g∗

S(ε). One can show that sin θ∗(−ε) =
sin θ(ε) and cos θ∗(−ε) = cos θ(ε). Following the same
lines as in case (1), we conclude that the ESE pairing state
is induced in the DN.

The central conclusions are summarized in the table
below.

Symmetry of the
pairing in
superconductors

Symmetry of the
pairing in the DN

(1) Even-frequency
spin-singlet
even-parity (ESE)

ESE

(2) Even-frequency
spin-triplet
odd-parity (ETO)

OTE

(3) Odd-frequency
spin-triplet
even-parity (OTE)

OTE

(4) Odd-frequency
spin-singlet
odd-parity (OSO)

ESE

Note that for even-parity superconductors the resulting
symmetry of the induced pairing state in the DN is the same as
that of a superconductor (the cases (1), (3)). On the other hand,
for odd-parity superconductors, the induced pairing state in the
DN has a symmetry different from that of a superconductor
(the cases (2), (4)).

In order to illustrate the main features of the proximity
effect in all the above cases, we calculate the LDOS ρ(ε) =
Real[cos θ ] in the middle of the DN layer.

We start from junctions with ESE superconductors and
choose the s-wave pair potential with �± = 1. The LDOS
has a gap (figure 1(a)) and the real (imaginary) part of f (ε) is
an even (odd) function of ε consistent with the formation of the
even-frequency pairing.

In junctions with ETO superconductors, we choose a px -
wave pair potential with �+ = −�− = cos φ as a typical
example. In this case, an unusual proximity effect is induced
where the resulting LDOS has a zero energy peak (ZEP) [14]
as illustrated in figure 1(b). The resulting LDOS has a ZEP
[14] since f (ε = 0) becomes a purely imaginary number. This
is consistent with f (ε) = − f ∗(−ε) and the formation of the
OTE pairing in the DN.

It is instructive to compare the ETO state with a px -wave
pair potential and the ESE state with a dxy-wave pairing. In
the latter case, as seen from figure 1(c), there is no subgap
structure at all in the LDOS in DN. This feature can be used
to distinguish the px -wave state from the dxy -wave one in
tunneling experiments.

In summary, in this section we considered four symmetry
classes in a superconductor allowed by Pauli principle:
(1) even-frequency spin-singlet even-parity (ESE), (2) even-
frequency spin-triplet odd-parity (ETO), (3) odd-frequency
spin-triplet even-parity (OTE) and (4) odd-frequency spin-
singlet odd-parity (OSO). We have found that the resulting
symmetry of the induced pairing state in the DN is (1) ESE
(2) OTE (3) OTE and (4) ESE corresponding to the above four
classes. When the even (odd) frequency pairing is induced in
the DN, the resulting LDOS has a gap (peak) at zero energy.
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3. Junctions in the clean limit

In this section we present the results of the theoretical study
of the induced odd-frequency pairing state in ballistic normal
metal/superconductor (N/S) junctions where a superconductor
has even-frequency symmetry in the bulk and a normal metal
layer has an arbitrary length.

We show that if a superconductor has even-parity pair
potential (spin-singlet s-wave state), the odd-frequency pairing
component with odd-parity is induced near the N/S interface,
while in the case of odd-parity pair potential (spin-triplet px -
wave or spin-singlet dxy -wave) the odd-frequency component
with even-parity is generated. In conventional s-wave
junctions, the amplitude of the odd-frequency pairing state is
strongest in the case of a fully transparent N/S interface and
is enhanced at energies corresponding to the peaks in the local
density of states (LDOS). In px - and dxy -wave junctions, the
amplitude of the odd-frequency component on the S side of
the N/S interface is enhanced at zero energy where the midgap
Andreev resonant state (MARS) appears due to the sign change
of the pair potential. The odd-frequency component extends
into the N region and exceeds the even-frequency component at
energies corresponding to the LDOS peak positions, including
the MARS. At the edge of the N region the odd-frequency
component is nonzero while the even-frequency one vanishes.

In the following, we consider an N/S junction as the
simplest example of non-uniform superconducting system
without impurity scattering. Both cases of spin-triplet odd-
parity and spin-singlet even-parity symmetries are considered
in the superconductor. We assume a thin insulating barrier
located at the N/S interface (x = 0) with N (−L < x < 0)
and S (x > 0). The length of the normal region is L.

The quasiclassical Green’s functions in a normal metal
(N) and a superconductor (S) in the Matsubara frequency
representation are parameterized as

ĝ(i)
± = f (i)

1± τ̂1 + f (i)
2± τ̂2 + g(i)

± τ̂3, (ĝ(i)
± )2 = 1̂ (6)

where the subscript i(=N, S) refer to N and S, respectively.
Here, τ̂ j ( j = 1, 2, 3) are Pauli matrices and 1̂ is a unit
matrix. The subscript +(−) denotes the left (right) going
quasiparticles [18]. Functions ĝ(i)

± satisfy the Eilenberger
equation [21]

ivFx ĝ(i)
± = ∓[Ĥ±, ĝ(i)

± ] (7)

with
Ĥ± = iωnτ3 + i�̄±(x)τ2.

Here vFx is the x component of the Fermi velocity, ωn =
2πT (n + 1/2) is the Matsubara frequency, n is an integer
number and T is the temperature. �̄+(x) (�̄−(x)) is the
effective pair potential for left (right) going quasiparticles. In
the N region, �̄±(x) is set to zero due to the absence of a
pairing interaction in the N metal. The above Green’s functions
can be expressed as

f (i)
1± = ±i(F (i)

± + D(i)
± )/(1 − D(i)

± F (i)
± ),

f (i)
2± = −(F (i)

± − D(i)
± )/(1 − D(i)

± F (i)
± ),

g(i)
± = (1 + D(i)

± F (i)
± )/(1 − D(i)

± F (i)
± ).

(8)

Functions D(i)
± (x) and F (i)

± (x) satisfy the Riccati
equations [22] in the N and S regions, supplemented by the
proper boundary conditions [17].

Here, we consider the situation without mixing of different
symmetry channels for the pair potential. Then the pair
potential �̄±(x) is expressed by

�̄±(x) = �(x)±(θ)�(x) (9)

with the form factor ±(θ) given by ±(θ) = 1, ± sin 2θ , and
± cos θ for s-wave, dxy-wave, and px -wave superconductors,
respectively. The pair potential �(x) is determined by the self-
consistent equation

�(x) = 2T

log T
TC

+ ∑

n�1
1

n− 1
2

∑

n�0

∫ π/2

−π/2
dθG(θ) f2+ (10)

with G(θ) = 1 for the s-wave case and G(θ) = 2(θ) for
other cases, respectively [23]. TC is the transition temperature
of the superconductor. The condition in the bulk is �(∞) =
�0. Since the pair potential �̄(x) is a real quantity, the
resulting f1± is an imaginary quantity and f2± is a real one.

Before performing actual numerical calculations, we now
discuss general properties of the pair amplitude. In the
following, we explicitly write f (i)

1± = f (i)
1±(ωn, θ), f (i)

2± =
f (i)
2±(ωn, θ), F (i)

± = F (i)
± (ωn, θ) and D(i)

± = D(i)
± (ωn, θ). For

the limit x = ∞, we obtain

f (S)
1± (ωn, θ) = 0,

f (S)

2± (ωn, θ) = �0±(θ)
√

ω2
n + �2

0
2±(θ±)

.
(11)

Note that f (i)
1± (ωn, θ) becomes finite due to the spatial variation

of the pair potential and it does not exist in the bulk. One can
show that D(i)

± (−ωn, θ) = 1/D(i)
± (ωn, θ) and F (i)

± (−ωn, θ) =
1/F (i)

± (ωn, θ). After simple manipulation, we obtain

f (i)
1± (ωn, θ) = − f (i)

1±(−ωn, θ),

f (i)
2±(ωn, θ) = f (i)

2± (−ωn, θ),
(12)

for any x . It is remarkable that functions f (i)
1± (ωn, θ) and

f (i)
2±(ωn, θ) correspond to odd-frequency and even-frequency

components of the pair amplitude, respectively. Function
f (1)
1± (ωn, θ) describes the odd-frequency component of the pair

amplitude penetrating from the superconductor.
Next, we discuss the parity of these pair amplitudes.

The even-parity (odd-parity) pair amplitude should satisfy the
following relation f (i)

j±(ωn, θ) = f (i)
j∓(ωn,−θ) [ f (i)

j±(ωn, θ) =
− f (i)

j∓(ωn,−θ)], with j = 1, 2. For an even-parity (odd-
parity) superconductor, ±(−θ) = ∓(θ) [±(−θ) =
−∓(θ)]. Then, we can show that for the even-parity case

D(i)
± (−θ) = D(i)

∓ (θ), F (i)
± (−θ) = F (i)

∓ (θ) (13)

and for the odd-parity case

D(i)
± (−θ) = −D(i)

∓ (θ), F (i)
± (−θ) = −F (i)

∓ (θ)

respectively.

4
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The resulting f (i)
1± (ωn, θ) and f (i)

2± (ωn, θ) satisfy

f (i)
1± (ωn, θ) = − f (i)

1∓(ωn,−θ),

f (i)
2±(ωn, θ) = f (i)

2∓ (ωn,−θ),
(14)

for an even-parity superconductor and

f (i)
1±(ωn, θ) = f (i)

1∓ (ωn,−θ),

f (i)
2± (ωn, θ) = − f (i)

2∓(ωn,−θ),
(15)

for an odd-parity superconductor, respectively. Note that the
parity of the odd-frequency component f (i)

1±(ωn, θ) is always
different from that in the bulk superconductor.

As shown above, the odd-frequency component
f (i)
1±(ωn, θ) is a purely imaginary quantity. The underlying

physics behind this formal property is the follows. Due to the
breakdown of translational invariance near the N/S interface,
the pair potential �̄(x) acquires a spatial dependence which
leads to the coupling between even-parity and odd-parity
states. Since the bulk pair potential has an even-frequency
symmetry, the Fermi–Dirac statistics requires that the order pa-
rameter component induced near the interface should be odd
in frequency. The phase of the induced pair amplitude under-
goes a π/2 shift from that in the bulk S, thus removing inter-
nal phase shift between the even- and odd-frequency compo-
nents and making the interface-induced state compatible with
the time reversal invariance. As a result, function f (i)

1± (ωn, θ)

becomes a purely imaginary quantity.
Let us now focus on the values of the pair amplitudes at the

edge of N region (at x = −L). We concentrate on two extreme
cases with (I) +(θ) = −(θ) and (II) +(θ) = −−(θ). In
case (I), the MARS is absent since there is no sign change of
the pair potential felt by the quasiparticle at the interface. Then
the relation D(N)

+ = D(N)
− holds. On the other hand, in case

(II), the MARS is generated near the interface due to the sign
change of the pair potential and the relation D(N)

+ = −D(N)
−

is satisfied [15]. At the edge x = −L, it is easy to show
that F (N)

± = −D(N)
± for the former case and F (N)

± = D(N)
±

for the latter one. As a result, f (N)
1± = 0 for case (I) and

f (N)

2± = 0 for case (II), respectively. Thus we can conclude that
in the absence of the MARS only the even-frequency pairing
component exists at x = −L, while in the presence of the
MARS only the odd-frequency one exists.

In order to understand the angular dependence of the pair
amplitude in a more detail, we define f̂ (i)

1 and f̂ (i)
2 for −π/2 <

θ < 3π/2 with f̂ (i)
1(2) = f (i)

1(2)+(θ) for −π/2 < θ < π/2 and

f̂ (i)
1(2) = f (i)

1(2)−(π − θ) for π/2 < θ < 3π/2. We decompose

f̂ (i)
1(2) into various angular momentum components as follows,

f̂ (i)
1(2) =

∑

m

S(1(2))
m sin(mθ) +

∑

m

C (1(2))
m cos(mθ) (16)

with m = 2l + 1 for the odd-parity case and m = 2l for the
even-parity case with integer l � 0, where l is the quantum
number of the angular momentum. Here, C (1(2))

m and S(1(2))
m are

defined for all x . It is straightforward to show that the only
nonzero components are (1) C (2)

2l and C (1)

2l+1 for the even-parity

superconductor without sign change at the interface (i.e., s-
wave or dx2−y2 -wave), (2) S(2)

2l+2 and S(1)
2l+1 for dxy -wave, (3)

C (2)

2l+1 and C (1)

2l for px -wave, and (4) S(2)

2l+1 and S(1)

2l for py-
wave junctions, respectively. The allowed angular momenta
for odd-frequency components are 2l +1, 2l +1, 2l, and 2l +2
corresponding to each of the above four cases.

In order to get better insight into the spectral property of
the odd-frequency pair amplitude, we perform an analytical
continuation from the Matsubara frequency ωn to the
quasiparticle energy ε measured from the chemical potential.
The retarded Green’s function corresponding to equation (1) is
defined as ĝ(i)R

± = f (i)R
1± τ̂1 + f (i)R

2± τ̂2 + g(i)R
± τ̂3. One can show

that f (i)R
1± (−ε) = −[ f (i)R

1± (ε)]∗, f (i)R
2± (−ε) = [ f (i)R

2± (ε)]∗, and

g(i)R
± (−ε) = [g(i)R

± (ε)]∗. The LDOS ρ(ε) at the N/S interface
at x = 0 normalized to its value in the normal state is given by

ρ(ε) =
∫ π/2

−π/2
dθ Real

(

g(i)R
+ (ε) + g(i)R

− (ε)

2π

)

. (17)

Let us discuss the case of s-wave superconductor junctions
as shown in figure 2. By changing the length L of the N region
and the transparency at the interface, we calculate the spatial
dependence of the pair potential and the pair amplitudes in
the Matsubara frequency representation. We only concentrate
on the lowest angular momentum of the even-frequency pair
amplitude C (2)

0 . As regards the odd-frequency pair amplitudes,
we focus on the C (1)

1 , C (1)

3 and C (1)

5 components which all
have odd-parity and depend on θ as cos θ , cos 3θ and cos 5θ ,
respectively, and correspond to the px -wave, f1-wave and h1-
wave components shown in figure 1. In all cases, the even-
frequency component is constant in the S region far away from
the interface and the corresponding odd-frequency components
are absent. The s-wave pair potential is suppressed for the
fully transparent case (Z = 0), while it is almost constant for
the low transparent case (Z = 5). It does not penetrate into
the N region due to the absence of the attractive interaction in
the N metal. On the other hand, in all considered cases, the
spatial variation of the even-frequency s-wave pair amplitude
is rather weak in the S region, while in the N region it is
strong for Z = 0 and is reduced for Z = 5 since the
proximity effect is weaker in the latter case. The odd-frequency
component always vanishes at x = −L and does not have a
jump at the N/S interface even for nonzero Z . Its amplitude
is strongly enhanced near the N/S interface especially for
fully transparent junctions. Note that not only the px -wave
but also the f1-wave and the h1-wave have sufficiently large
magnitudes as shown in figures 2(a) and (c). With the decrease
of the transparency of the N/S interface, the odd-frequency
components are suppressed as shown in figures 2(b) and (d).

It is instructive to discuss the spectral properties of the
induced pairing state in the N region. Here, we concentrate
on the situation when the N/S interface is fully transparent
(Z = 0) and L = 5L0. In this case the LDOS in the N
region and at the N/S interface coincide with each other. The
LDOS has multiple peaks due to the existence of the multi-
subgap structures due to electron–hole interference effects in
the N region [24, 25].

5
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0

Figure 2. Spatial dependence of the normalized pair potential, even-frequency pair amplitude and odd-frequency components of the pair
amplitude for s-wave superconductor junctions. Here, we choose ξ = vF/�0 in the S region (x > 0) and ξ = L0 = vF/2πTC in the N region.
The pair amplitudes C (2)

0 , C (1)

1 , C (1)

3 , and C (1)

5 are denoted as even s-wave, odd px -wave, odd f1-wave, and odd h1-wave pair amplitudes.
(a) Z = 0, L = L0, (b) Z = 5, L = L0, (c) Z = 0, L = 5L0, and (d) Z = 5, L = 5L0, respectively.

The amplitudes of the corresponding even-frequency
and odd-frequency components are enhanced at energies ε

corresponding to the LDOS peak positions, while the ratio of
these components depends on the energy and location in the N
region. To clarify this point further, we concentrate on the ratio
of the odd- and even-frequency components in the N region.
The ratio of the magnitude of the odd-frequency component
f (N)
1+ (ε, θ) to the even-frequency one f (N)

2+ (ε, θ) is

∣

∣

∣ f (N)

1+ (ε, θ)

∣

∣

∣

∣

∣

∣ f (N)
2+ (ε, θ)

∣

∣

∣

=
∣

∣

∣

∣

tan

(

2ε

vFx
(L + x)

)∣

∣

∣

∣

. (18)

At the edge of the N region, x = −L, the odd-frequency
component vanishes at all energies. On the other hand, a very
interesting situation occurs at the N/S interface, x = 0, as will

be shown below. In figure 3, we plot this ratio for θ = 0 and
x = 0.

It is remarkable that at some energies the amplitude of
the odd-frequency pair amplitude exceeds that of the even-
frequency one.

Let us clarify the relation between the positions of the
bound states and the above ratio of the odd-to-even pair
amplitude. In the limit L � L0 the bound states are
determined by the simple relation [24, 25]

εn = πvFx

2L
(n + 1/2), n = 0, 1, 2, . . . . (19)

That means that at the subgap peak energies the odd-
frequency component dominates over the even-frequency one
at the N/S interface. This is a remarkable property of the
odd-frequency pairing, which makes it relevant to the classical

6
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Figure 3. Ratio of the pair amplitudes f (N)

1+ (ε, θ)/ f (N)

2+ (ε, θ) on the N
side of the N/S interface in s-wave junction as a function of energy ε
for θ = 0 and L = 5L0.

McMillan–Rowell oscillations in the N/S geometry [25]. To
summarize, we have shown that the odd-frequency component
is present even in the standard case of a ballistic N/S system,
and it dominates at energies when the LDOS has subgap peaks.

In summary, using the quasiclassical Green’s function
formalism, we have shown that the odd-frequency pairing state
is ubiquitously generated in the normal metal/superconductor
(N/S) ballistic junction system, where the length of the normal
region is finite. It is shown that the even-parity (odd-parity)
pair potential in the superconductor induces the odd-frequency
pairing component with spin-singlet odd-parity (spin-triplet
even-parity). Even for conventional s-wave junctions, the
amplitude of the odd-frequency pairing state is enhanced at the
N/S interface with a fully transparent barrier. By analyzing
the spectral properties of the pair amplitudes, we found that
the magnitude of the resulting odd-frequency component at
the interface can exceed that of the even-frequency one. For
the case of px -wave and dxy -wave junctions, the magnitude
of the odd-frequency component at the S side of the N/S
interface is significantly enhanced. The magnitude of the
induced odd-frequency component is enhanced in the presence
of the midgap Andreev resonant state due to the sign change
of the anisotropic pair potential at the interface. The LDOS
has a zero energy peak (ZEP) both at the interface and in the
N region. At the edge of the N region, only the odd-frequency
component is nonzero.

The underlying physics behind these phenomena is related
to the breakdown of translational invariance near the N/S
interface where the pair potential �̄(x) acquires a spatial
dependence. As a result, an odd-frequency component is
quite generally induced near the interface. The breakdown
of translational invariance is strongest when the pair potential
changes sign upon reflection as in the case of px -wave and
dxy -wave junctions, then the magnitude of odd-frequency

component is the largest. Moreover, the phase of the interface-
induced odd-frequency component has a π/2 shift from that in
the bulk of S. Therefore, as shown above, the odd-frequency
component f (i)

1± (ωn, θ) becomes a purely imaginary quantity
and the peak structure in the LDOS naturally follows from the
normalization condition.

We have also shown that in N/S junctions with s-wave su-
perconductors the classical McMillan–Rowell oscillations [25]
can also be reinterpreted in terms of odd-frequency pairing. At
the energies corresponding to the subgap peaks in the N/S junc-
tion, the odd-frequency component dominates over the even-
frequency one. This is a remarkable application of the odd-
frequency pairing concept.
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